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AN EXACT TRANSFORMATION FROM GEOCENTRIC TO GEODETIC

COORDINATES FOR NONZERO ALTITUDES

David R. Hedgley, Jr.

Flight Research Center

INTRODUCTION

In space position measurement systems, itis often necessary to transform geo-

centric to geodetic coordinates. Consequently, itis important to have an exact

closed-form solution for the transformation that is free of embedded singularities.

An exact solution is particularly important for determining missile positions. All

the previous work in this area fallsinto two categories: formulas that are mathemat-

ically exact but involve equations that become unstable in the neighborhood of their

singularities, and formulas that are approximations that may or may not have inher-

ent singularities. References 1 and 2 are of the former type, and references 3 to 5
are of the latter.

Although some of these methods are adequate under some conditions, they have
limitations under certain circumstances. This paper presents an exact closed-form
solution for the transformation that is free of singularities. The solution permits
the evaluation of any of the existing methods under any conditions and should serve
as a primary standard.

The appendix contains computer subroutines that implement the ideas that

follow and examples of input and output data.

SYMBOLS

Parenthetical symbols are computer identifiers for variables.

a (A)

b (B)

d

d
3C

major axis of ellipsoid

minor axis of ellipsoid

the distance from any point in space to the ellipsoid

= x 0 - x 2



d
Y

d
Z

e (E)

f (F)

f(x, y, z)

g

H

h (ALT)

h (ALTS)
S

PO

P2

t
x

t
Y

t
Z

X

x,y,z

Xo,Yo,Z 0

(X0 ,Y0 ,Z0)

x2'Y2' z2

(X2 ,Y2, Z2)

Y

Z

= YO - Y2

= Z 0 - Z 2

eccentricity

flattening factor

general function to be minimized

restraint imposed on f

function which is composite of functions f and g

altitude normal to the ellipsoid

altitude computed from distance formula

any point in space

the point on the ellipsoid that is the minimum distance from the

point P0

percentage of error m "dx

percentage of error in d
Y

percentage of error in d
z

coordinate axis that intercepts the Greenwich meridian

coordinates of any point on the ellipsoid

coordinates of P0

coordinates of P2

coordinate axis that is in a direction normal to the plane deter-
mined by the intersection of X and Z

coordinate axis that intercepts the poles



(V)

k (ALONG)
e

k (ALONG)
W

¢p (ALAT)

o_

arbitrary real constant to be determined

error in

longitude east

longitude west

geodetic latitude

geocentric latitude

ANALYTICAL FORMULATION

Let a model of the earth be an ellipsoid given by the following equation (ref. 6):

2 2 2

2 + + z
a a

(1)

where a > b. In addition, let P0 (x0'Y0'Z0) be any point above the ellipsoid, as

shown in the sketch below.

Z P0 (x0'Y0'Z0)

b

(x2 'Y2' z2)

Y

X



The line perpendicular to the surface of the ellipsoid from P0 is the altitude of

P0 above the ellipsoid and hence is the shortest distance from P0 to that surface

(eq. (1)).

Therefore, by minimizing the distance from P0 to the surface of the ellipsoid, it

is possible to acquire the coordinates (x 2, Y2' and z 2) of the point on the surface
that cause the distance defined by

2nl/2(zz01j (2)

to be minimum.

The Lagrange multiplier method (ref. 7) is used to implement this minimization
where

r¢.,_,z_: (. _0)_+(_ _0)_+(z z0)_

and

2 2 2

g (x , y , z ) = -_ + -_2 + -_ - 1
a a

Then

If partial derivatives are taken in turn and each is equated to zero, the following
equations result:

DH a2y : 0 or y=y0/(1-a/a 2) (4)

_z b2 - 0 or z = Zo/(1 - _/b 2) (5)

2 2 2
DH_ x y z

Da a2 a2 b2
+ 1 = 0 (6)



Equations (3) to (5) can be substituted into equation (6) as follows:

-[_0_(_-_o'/}_o_-[,0_0-o_:./]2_o_-Ezo_(,-o_/]2_2+1=0
or

Simplifying and collecting,

(.2_)__(1j2

+ 2 (x02 + yo 2

+ i/b2)a 3 + (4 + a2/b 2 + Xo2/b 2 - y02/b 2 - z02/a2)a 2

+ z02 - a 2 - b21a + a2b 2 - x02b 2 - y02b 2 - z02a2 = 0

=0

(7)

This is a quartic equation in _ and can be solved in closed form (ref. 8). The

proper solution can be determined ifthe solution is restricted to the real zeros of

equation (7) and that zero of equation (7) is chosen that causes d to be smallest.

The appropriate solution of this quartic has no singularities. That is, _ does not

approach plus or minus infinity,because that would imply from equations (3) to (5)

that x 2, Y2' and z2 equal zero. Equations (3) to (5) do not become unstable,

because the statement _ = a2 or a = b2 implies that x 2, Y2' or z2 approaches

infinity. Since altitude is nonzero, a does not equal zero.

Let a 0 be that zero that satisfies the quartic equation. Then, from equations (3)

to (5),

_,--_o_0-oo_o_)--_oo_(o_-oo) (8)

2/(a2 aO) (9)Y2 =yO/( 1-aO/a2)=yOa -

z2 = Zo/(1- ao/b2) = Zob2/(b 2- SO) (10)

2nl/2
(11)

qo = sin -1 (z 0 - z2)/h s (12)

tan-l(2/x2) -l(yo/Xo) (13)k e = y = tan = -k w



Although the foregoing formulas are mathematically exact, for computational reasons

it is usually advantageous to normalize all distances, because this minimizes errors

due to rounding off. However, errors due to rounding off are stillpossible. To

circumvent this problem for altitudes not near zero, consider the following error

analysis with respect to the computation of hs, )_,and q_.

Let e be a small error introduced in the computation of the zero of the quartic.

In addition, let d z = z 0 - z 2 = -Zoao/(b2 - a0). Then the error in d z is introduced

by a 0 only, because a, b, x 0, Y0' and z 0 are all exact. It is easy to show that the

percentage of error, t z, of d z is as follows:

Fromoquationb2o0 ThereforeIb2o01lo0J> andsince
( - ) ( - - )_ . _/a0 Similarly,is small, b2 a0 / b2 a0 e -_ 1 Therefore tz

tx, ty _ _/a 0 .

Since equation (12) involves the ratio of two numbers with virtually equal

percentages of error, latitude is undisturbed by a small error in the computation of

a0 due to rounding off.

As noted above, this analysis is valid only if the altitude does not approach zero;

otherwise a 0 approaches zero and the value le/a01 may approach infinity. The
i w

instability of I_/a01 suggests that equation (12) may become unstable under these
conditions.

This final problem can be resolved. IfP2 (x2'Y2'z2) is the point on the

ellipsoid that intersects the normal drawn from PO (Xo'Yo'Zo)' the following equa-
tion (ref. 6) may be used:

(p= tan-l[tan m/(1-e2)] (14)

1/2

z2/(l. 2+ Y22) \_ From these relationships q_ maywhere tan m = x 2
be determined

immediately. The error, if any, in tan co introduced by the computational round-off

error in a 0 is inconsequential, because it can easily be shown that the percentage of

error in x 2, Y2' and z 2 is virtually zero. In fact, the percentage of error in z 2 and

x2°r Y2is given by (b 2 -a0)/(b2-a0-e)-1 and (a 2-a0)/(a 2-a 0- _)- 1,

respectively. Since e is small for any value of a 0, the quantities

!



<b2- aol/Ib2-SO-_I and (a 2-a01/Ia2-s 0- _I approximate lunderanycondi-

tions. Thus, equation (14) is preferable to equation (12) for determining geodetic

latitude for any altitude.

However, even the smallest error in s 0 causes more than negligible error in

the computation of h s (eq. (11)), because the error is amplified by the scaling

factor used to restore the true value of h after computations are completed. This

analysis suggests that it is preferable to use the following exact formulas from
reference 6 to compute h instead of equation (11):

x O= a� i- e2 sin2 q_ +h cos q_ cos k

YO Ial(1 e2 sin2cp) 112 }= - +h coscp sink

}z0 1-e )/(1 e2 2 +h sinq 

where f = (a - b)/a and e2 = 2f- f2. Since latitude and longitude are known, h

can be computed directly and the proper equation can be chosen to compute h to

avoid division by values close to zero.

In this way the geodetic coordinates _o, )_w' and h are determined exactly both

mathematically and eomputationally. Therefore, the computational accuracy of the

method is the accuracy of the computer used.

CONCLUDING REMARKS

A mathematically exact method for computing geodetic coordinates from geocen-
tric coordinates is derived. The computational accuracy achieved by using the
method is as accurate as the computer used. The transformation provides a primary

standard and makes possible the evaluation of any of the existing methods.

Flight Research Center
National Aeronautics and Space Administration

Edwards, Calif., November 4, 1975



APPENDIX

COMPUTER SUBROUTINES AND DATA SAMPLES

The following computer subroutines implement the theory presented in the text.
The subroutines were written in FORTRAN IV.

The comments in the listings should be sufficient for their comprehension and
modification. A sample input and output listing is provided to facilitate the verifi-
cation of the correct FORTRAN code.

1



APPENDIX - Continued

Subroutine GEOD

5

10

t5

20

25

30

.X5

4G

50

55

SbBROUTINE GEOD(ELE, ELEH,ELES,JZI,AZIP,AZIS,PHI,FHIM,PHIS,

'PALM,ALMM,ALMS,RAN,H,ALAT,ALONG, AL I|

THIS SUBROUTINE CCMPt_TES THE ALTIIUCE, GEODETIC LATITUDE AN{)

LONGITUDE GIVEN TFE RANGE, A/IPUTH AND ELEVATICN CF A FCINT

WITH RESPECT TC A RADAR SITE,,

ELE, ELEM,ELES ARE THE DEGREES, MINUTES AND SECCNCS PESPECTIVELY OF

ELEVATION OF THE TARGET WITH RESPECT TO A RADA_ SITE.

AZI,AZIM,AZIS ARE THE DEGREES, MI_UTgS AND SECENCS PESPECTIVELY OF

AZIMUTH OF THE TARGET WITH RESPECT TO J RADAR SITE,

F_I, PMIM, PFIS ARE THE DEGREES, MINUTES AND SECCNOS RESPECTIVELY

OF THE GEODETIC LATITUDE CF ThE RADAR SITE,

ALM, ALMM, ALMS ARE THE DEGREES, MINUTES AND SECONDS PESOECTIVELY

CF THE LONGITUDE OF THE RADAR SITE.

R_N IS THE RANGE OF THE TARCEI WITH RESPECT TC ThE PACA_ SIT_= .

H IS THE ALTITEDg OF T_E RADAR SITE A_OVE TP __ _EFERE _CE ELLI;SDID,

ALAT IS THE COMPUTED GEODETIC LATITUDE,

ALONG IS THE CC_FUTED LDNGITU[E,

ALT IS THE COMPUTED ALTITUOE.

DIMENSION R(12},_OOT([2)

9EFINE MAJOP A_O MINCR aWlS CF _¢LLIPSCIO IN FEET,

A:20 9258_?.

r_=208548q2.

F:fA-P.)/A

NERMALITE IN U_ITS OF A.

ZP=A

Al=A

H=HI2P

RAN=RAhlZP

A=AIZP

R=BIZP

GK=3.l&iEg2653E

CCN=GKI180,

CnNVERT ANGLES FROM DEGREES TO RADIANS.

ELE=ELE÷(ELEq/60)+(ELES/360B)

OHI=PHI+(PHIMI60)+(PHIS/_6QO|

AZI=AZI+(AZIMI60)÷(AZIS/3600)

ALM=ALM+{ALMM/EO}+{ALMS/3600)

ALM=360-ALM

PFI=PHI_GON

ALM=ALM_CON

1
2

3
4

5
E

7'
8

?
10

11
t2

14
15
16
t7

1E
_0

21

P.3
2h

2_

_6
27
28
29

30
"_1
_2
X3

3&,

X5

37

hi]

W3
hh
_5

hE
_7

4B
49
50
5J

52

53
5h
55
5E
57



APPENDIX- Continued

6B

65

70

75

8O

$5

9O

q5

I00

li0

C

C

C

C

C

AZI =ATI_CON

ELE=ELE'CON

CCMPUTE THE TRANSFOfiMATICK CF IARGET COORdinATES,

FROM FOLAR CCCRDINAIES TC C_RTESIah COORCI_TES,

CENTERED AT TRACKING RADAR,

XO=RAN_SIN (AZI } "CO_ ( ELE|

70=RANa_S IN{ELE)

YO=RAN_COS( A7 I) '_COS (ELE)

CCMPUTE THE TRANSFORMATION OF IHE RADAR SITE GIVEN

IN GEODETIC POLAR CCC_DINAIES TO CARTESIAN CCORDINATES

WIT_ RESPECI TO THE GEOCENTQIC CENTER OF THE EARTh,

EX--I/(I°CE_(SIN{PHI|_'2)}

EX=ABS(EX)

EX:EX_A

EO= (E_+H)_COS {FHI)_CCS |_LMI

FO=(EX÷H)a'COS (PHI)_SIN(ALM)
GO=tEX'_(I-CE)÷H) _SIN{PHI}

CCMPUTES THE CIRECTION COSINES OF THE _YIS OF THE R_OA_ SITE,

UI----SI_ (ALM)

U2:COS (ALM)

U3=O

VI:-CCSIALM)'SIN(PHI)

V?:-S IN( _LM} '_SIN( P_ I)

V3:CO_{mHI)

W[=COSIALN)_CO_(FHI)

W2:SIN(ALMI_COS(FHI)

W3:_IN (PHI)

CCMPUTE TWE TPANSFORMATICN CF TEE FCINT C_ TARGET

FqOP CARTESIA_ COCRCIhATES CENIEREC AT TqACKI_G

RADA_ TO GEOCENTRIC CaRTESI_ COC_DINATES,

XE=XO_UI+YO'VI+ZO_Wi÷EO

YS=_O_C2+YO_V2+ZO_W2÷FO

_5=XO_U3+YO_V_+ZC_W_+GO

XO=X5

YC=Y5

ZC=Z5

CONSTRUCT THE COEFFICIENTS CF THE CUARTIC ECUATIO_|

RI?) • X + R(i) : 0

R(5)=I/((A_n,) _2)

R(4)=-2 a'((I/(A_2)}+lI/ (_2)1)

R(3)=h÷((_/A) _2)+((A/_)_?)-((XO/B)_a'?|-((YO/_)'_'?|-({70/AI'_2)

R (2)=2_ (XO_'_? +YOa_a_2÷ 70'_ ? )- 2 _ (6_2÷B_?)

R (I)= (A'_)'_'_2- (XOa'_ | _a_. ( yO_nl _2- (ZO_A) a,_?

5B
59

60

62
E3
6_

E5
66
67
Ee

6g

70

7t
72
73

75

?6
77
7B
79

_1

_4

_E

e7

B9

qo

(_1

92

9]

q4

c5

g6

97

gB

9q

100

101

102

103

104

105

106

I07

108

I09

I10

111

II]

11h

10



APPENDIX- Continued

115

120

125

130

t35

1_0

t45

150

155

lEO

170

16

CALL QUART TC SOLVE THE OUARTIC EQUATION FOE ALL

REAL ZEROS WHEREt
R = ARRAY OF COEFFICIEI_TS

ROOT = A_RAY OF REAL 2EE(. ¢

NI = NLMBER OF REAL ZERCS

CALL QUA RT(R,,ROOT,NI )

DETERMINE THE COORDINATES ON THE ELLIPSOID THAT

MAKES THE DISTANCE FRCM THE TA[GEI TO THE SURF=CE

PS=t O. _ 30
XJ = O, O
YJ = 0,0

7_J = 0.0
O0 i6 J=I,NI

V=RCOT(J)

X2= ( XO _'A_'_'2)/ ( J '_2- V }

Y2=(YO'=A_2} /(A'f'_Z-V}

Z2= (ZO_B*'_2) / (P-'_'2-V}

XA=(-XO_'V}/IA_'F2-V}

YA= (-YC'_V) / (A _'_'?-V)

ZA=(-ZO'_V)/(r_'_'_2-V|

U=U _, 5

IF{U.GT,,PS) GO TO i6

oS:U

YJ=X2
YJ:Y?

7J=72

CONTINUE

X2=XJ
Y2=YJ
7?:ZJ

TWE ALTITUDE EOUALS THE MI_IMUP 31STANCE FFCM THF

TARGET TO TI-E SURFACE,

CON=I_O./GK

F_ETERMINE THE LO_GIT'JOE.

ALONG=ATAN2 (YO,XO)

OETE_MINE THE GEODETIC LATITUEE,

O= X 2 .v_,2÷y 2_,.=2

D=D ='_, 5

AA=D"( I, -CE)

ALAT :ATAN2 (Z2, AA)

ALAT=S IGN (ALAT ,ZO)

XI:XO_ZP

YI=YO'F Zp

7t= ZO '_ Zo
EX:I./(I.-CE _(SIN(ALAT) _2))
EX=A BS (EX)

EX= EXm'=,,5
EX=EX_AI

A VI_IWUM,

It5

11E
tit
118

119

t?t
172

t23
124
125

t26
127
128

tzg

1_1

t33

t3h
135
t36

137
118
13£

t_l

t42
t_3
lh_
tk5

t_6

t_8

tSO
151

152
153

tSS
tSE
lET

1=.8
t=.g
t 60
tel

162
rE3

1_5
rE6

t67
1(8
rE9
tZO

t?t

11



APPENDIX - Continued

175

180

15

7t0

COMPUIE ALTITUDE BY AN EXACT ECUATIOk WHICH PI_IPIZES ;CLND OFF

ERRORS.

IF(ABS(SIN(ALAIt}.GT..IIGO TO 1_
IF(ABS(COS(ALCt;G}},GT.,1}GO TC 15
ALT--(Yt/ (COS(ALAT)'_SIN(ALONG} }}-EW

GC TO 710
ALT=(71/SIN{ALATI)-(EX'_(1-CE)}
GC TO 710
ALT= ( Xl/ (COS (ALAT)'_COS (ALONG) | )-EW

CONTINUE
ALAT=ALAT_CON

CHANGE SIGh OF LC_GIIUCE TO CCkrC_M WITH INPUT WFICH

WAS IN OEGREES WEST.,,CALCULAT]ONS GIVE LOhGITLDE IN

DEGREES EAST, CHANGE SIGN TO GET LONGITUDE IN CEGREES

WEST, CONVERT FRCM RADIALS TO [FG_EES,

ALONG=-A LONG'_C CN

RETURN

E_O

1.72
173
l?k

t75
1 76
177

178

18,0

]82
1B3
t84

1B =.

1_8

1c._]

1ql
1q2
1'-33

12

1



APPENDIX- Continued

Subroutine QUART

10

15

Z0

25

3o

35

45

5O

55

C
C
C

C
C
C

C
C
C

C
C

C
C

C
C

C
C
C

C

C
C
C

SUBROUTINE QUART IR, ROOT,NI)

THIS ROUTINE SOLVES FOR THE REJL ZEROS ONLY VIA

FERRARIIS METHCD, KNEW FIRST COURSE IN THE THEORY OF

EGUATICNS, DICKSCN, PP, 51-52)

R IS THE ARRAY WHICH CONTAINS THE COEFFICIENTS OF THE

Q_ARTIC ARRANGED IN ASCENDING CRDER,

RIB) _ X_4 + RKW) _ X_3 +

THE AR;AY ROOT WILL CONTAIN ThE ;EAL ZEROS Cr THE QUARTIC

NI IS THE SCALAR VARIABLE THAT STATES THE NUMBER OF REAL ZEROS

_IMENSION R{L),RCOT(1)

NI=O

NCRMALIZE CCEFFICIENTS SOt

DO 1_ J=1,5

19 RKJ}=R(Jt/R{5)

C=R(])

O=_ (2)

E=R(1)

CALCULATE CCEFFICIEkTS F_i, CI, DI, OF THE RESCLVENT CUBIC

Y*_3 ÷ BI_Y_4'Z ÷ City ÷ CI = 0

Bt=-C

CI=_D-k_E

IN SOLVING CUBIC EQUATION, CALCUIATE COEFFICIEhT_

OF THE CORRESCONDING _EDUCFC CUBIC WHICH _AS NO T_RP

OF THE SECOND DEGREE BY SETTI_C Y = Z - Bt/3!

Z_'_3 ÷ P_Z + Q = 0

P=Ci- ( (B1 _+ 2)/3 ;
_=DI-( (B I'_C1)/3t ÷(( 2_1 _ 1_"_3| )/27)

THE DISCRIMINANT OF THE GEkERAL CUBIC EQUATION IS

EQUAL TO THE DISCRIMINANT [EL CF THE CORRESFONDING

REDUCED EQUATION,

DELT=IS'_BI_Ci'_Dt-6_ ( B1 '_3) _01+ KBi_Cit _2
DELV=-_ (CI_3) -27'_ (D 1_ 2)

DEL=DELT÷DELV

IF DEL IS NEGATIVE, ONE ROOT IS REAL, ANO TWO ARE

CONJUGATE IPAGINARIES,

195

196
197

!c8

200
?el
Z02

203
_0/.,

2_5

_OE
?07

20_
2O9
_lO

21Z

717
_18

_1_
270
-721
2_2

2_3
22_

2__E
2?6
227
27.8

229

231
232

23. •
23_,
_35
_36
237

?-38
239
2_0

Z_,3

2h5
2_6
2_7

2h8
2h c.
250

2Et

13



APPENDIX - Continued

60

65

70

75

80

85

qO

q5

tO0

I05

110

IF(DEL,GE,O, |GC TO 12

R$= (Pl 3)_3÷ (QI2) _2

RS=ABSfRS)

A=((-QI2)÷RS_'I',S}

W= ( ( -qI2 )-(R S _"_,,.:.))

S=ABS(AI

T--ABS (W)

WI=W

a1=A

VV=I, 13,

A:S_VV

W:T_VV
J=A'_S IGN (1, ,A1 )

W:W'SIGN (i,, W1)

Y1 IS THE SINGLE _EAL ROCT CF THE REDUCED CUBIC,

Y IS THE SINGLE REAL ROOT CF TPE GEKERAL CUPID,

YI=A*W

Y:YI-(BI/3)

GO TO iO

12 CONTINUE

IF OEL IS PCSITIVE, THERE A_E THREE OISTINCI REAL
ROOTS, IF DEL IS ZERO, THERE a_E AT LEAST TWO EQUAL

P_AL ROCTS,
T_IGONCMETRIC SOLUTIC_ IS USED,

TN= ( -4 _'Pl3)

TN=Am.S (TN)

TN:TN _, 5

COS_]A=°, 5_0 '_( (-'_)'_ I, 5)

IF(A@S(COSSA ),,GT,I,} COS3A=SIGN(],,COS3A)

APC=ACOS(COS3A|/3

COSA=COS (A_D |

YI= TN_'COSA

Y=Yl-(_l/3)

10 CCNTINUE

9ACK TO SOLVIKG THE OUARTIC, WHERE Y IS SUCH THAT

A2_X4_'2 _ P2'_X + C2 IS T_E SOUARE OF A LINEAR FUNCTION,

M_X + N, AND ALSO EQUAL TO (X'_'_2 + B_XI2 + Y12)_'2

A 2:, 25 = (B'' 2)-C+Y

92=, 5"B'_ y-D

C2=, 25_' (Y"2) -E

IF(A2,NE,O,)GC TO 111

IN CASE A2--O, (X_*2 ÷ B_X/2 + Y/_)_2 = B2'_X + C2
SINCE THE PCLYNOMIAL IS A FE_fECT SCUARE, @2 : O

AND THE QUADRATICS TO BE SOLVEE AREI

X_2 ÷ R_X/2 ÷ Y/2 " C2"'_, _. = 0 AND

X_'2 + B_X/2 + V/2 ÷ C2"%5

OELt : (B/2|'_2 - 4_(Y/2 - C2'_t,5)

752
253

25(*
?.55
256
257
258

2T9

2_0
26t

2(2
2E3
__64

2E7
2(8
2Eg

272
273
77_
77_
276

P-)7

28r]

282

_?83
28W
2B5

_86

?_88

290

292
293
294

_95
296
2c7
298

2:.9

303

_OW
305
306
_07
3O8
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APPENDIX- Continued

115

120

125

1.30

i35

145

DXI=B/2

DX2=B/?

GC TO 223

111 CONTINUE

IN CASE A2 IS NCT O, THE_ k = A2_,5,

THEN THE OUADRATICS TO BE EOLVED AREZ
X_2 + (BI2 - M)_X + YI2 - N = 0 AND

X_=2 ÷ (el? + M)_X ÷ YI2 ÷ N = 0

I_ = B?I(?_M),

A?=ABS(A2)

AM=A2 _ . 5

AN:q? / {2 _AM)

DXI:, 5_B-AM

DX?=, E_B+AM

DELt = {_/2 - AM)_2 - W'IY/2 - AN)

DEL2 = (B/? ÷ AM}_2 - 4"(Y12 ÷ A_)

223 CONTINUE

ROOTS OF TWO QUAO_ATICS ARE THE FOU_ _OOTS CF THE QUA_TIC,

CNLY ThE REAL ROOTS A_E RETURNED.

22

25

IF(_ELI,LT,O,}GO TO ?2
NI=NI÷I

ROOT(NI):{-DXI/2)÷((DELI_°S)I2)

NI=NI+I

ROOT(NI)={-DXII?t-(|DELI_,5_I2|

IF(GEL2,LT,D,}GO TO 25

NI=NI+I

RCOTINI)={-OX?I2I+((DEL2_,E)I_)

KI=KI÷I

ROOT(NI)=(-DX2/?)-((DEL2_,E)/2)

CCNTINUV

RETURN

END

30g

XI5
"_16

317
318

320
3_1
_22

322
324

3_6

328

3]O

_32

335
336

"_0
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APPENDIX - Concluded

Input and Output Data Samples

INPUT .....

CUTPUT ....

pOINT COCRDIkJTES WRT RADA_ SITE
ELEVATID_ OEG,
AZI EEG,

RANGE FEET

fiADA_ SITE COORCINATES

GECEETIC LATITUEE

LONGITUDE

ALTITUDE FEET

POINT COOREINJTES

GEDCETIC LATITUCE

LONGITUDE

ALTITUDE FEET

go.o00o
-0.0000

.1000

55.0000
?2.0D00

-0,0000

55.0000
22.0000

.oggg

._SCOOOCOOO06E_O2

.21_g_gggBsE_D_

.gg8557806015E-Ot

I_PUT .....

CUTPUT ....

FOINT COOREINJTES WRT RADJG SITE

ELEVATIC_ DEG,

AZI DEG,

RANGE FEET

RADA_ SITE COORDINATES

GEOCETIC LATITUCE
LONGITUDE

ALTITUDE FEET

FOINT COORtINJTES

GECEETIC LATITUCE

LONGITUDE

ALTITUCE FEET

g0.0000

-0o0000
EO000,OOO0

44.0000
12t.0000
_00.0000

h_.O000

121,0000

EO_gg.ggo0

,h_OgCOOOO2E4E÷02

.!20_gggqggggE_03

._04_gBgggS_E_05

INPUT .....

CUTPUT ....

FOINT COOR[INATES WRT RADAG SITE

ELEVATIC_ DEG.

AZI DEG,
RANGE FEET

RADA_ SITE COCRCT_ATES

GEODETIC LATITUCE

LOkGITUOE
ALTITUOE FEET

FOINT COORIIKATE$

GECDETIC LATITUEE

LONGITUDE

ALTITUDE FEET

9C.Q000
-O.OOO0

_gg,o000

33,0000
88.O000

700.0000

33,0000

88,0000
1(000COEg9o0492

,_2qE_gqggTgE_02

,lOOC_O069gOSE+10
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